Finite-size corrections for the XXX antiferromagnet

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L13
(http://iopscience.iop.org/0305-4470/19/1/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Finite-size corrections for the $\boldsymbol{X X X}$ antiferromagnet

L V Avdeev and B-D Dörfel
Joint Institute for Nuclear Research, Head Post Office, PO Box 79, Moscow 101000, USSR

Received 22 May 1985, in final form 20 August 1985

Abstract

We present a method of calculating finite-size corrections for the isotropic ($X X X$) Heisenberg chain in the antiferromagnetic case. The leading corrections to the energy and the root density of the ground state are compared with the numerical data up to $N=256$ sites in the chain.

Integrable models such as the one-dimensional isotropic ($X X X$) Heisenberg model (нм) with the Hamiltonian

$$
\begin{equation*}
H=(J / 4) \sum_{n=1}^{N}\left(\boldsymbol{\sigma}_{n} \cdot \boldsymbol{\sigma}_{n+1}-1\right) \quad\left(\boldsymbol{\sigma}_{N+1} \equiv \boldsymbol{\sigma}_{1}\right) \tag{1}
\end{equation*}
$$

are solved by applying the Bethe ansatz technique (Bethe 1931). The explicit solution requires the knowledge of the roots λ_{j} of the so-called Bethe ansatz equations (BAE)

$$
\begin{equation*}
\left(\frac{\lambda_{j}+\mathrm{i} / 2}{\lambda_{j}-\mathrm{i} / 2}\right)^{N}=-\prod_{k=1}^{M} \frac{\lambda_{j}-\lambda_{k}+\mathrm{i}}{\lambda_{j}-\lambda_{k}-\mathrm{i}} \quad(j=1 \ldots M) \tag{2}
\end{equation*}
$$

For the vacuum state in the case of N even, $J>0$ (antiferromagnetic нм), the solution includes $M=N / 2$ real roots. In the infinite-size limit, $N \rightarrow \infty$, the number of equations as well as the number of roots tend to infinity. Then the bae are reduced to a linear integral equation for a density function (Hulthén 1938), which can easily be solved (for a survey, see Faddeev and Takhtajan 1981).

Recently, de Vega and Woynarovich (1985) have suggested a method of calculating finite-size corrections for models with a non-zero mass gap. This restriction played a crucial role in their calculations. Therefore, the method cannot be directly applied to the $X X X$ нм where the mass gap vanishes.

However, using a similar starting point idea, we were able to derive an analytic expression for the leading correction to the vacuum energy which is in good agreement with our numerical results. Furthermore, we present an iteration procedure, based directly on the BAE, for evaluating the root density and demonstrating the relation of the first approximation to the exact density calculated numerically.

In our case the baE (2) can be transformed to the following system of equations:

$$
\begin{equation*}
Q_{j} / N=(1 / \pi) \tan ^{-1}\left(2 \lambda_{j}\right)-(1 / \pi N) \sum_{k=1}^{M} \tan ^{-1}\left(\lambda_{j}-\lambda_{k}\right) \tag{3}
\end{equation*}
$$

where the $Q_{j},\left|Q_{j}\right| \leqslant Q_{\max }$ are (half)-integers according to $Q_{\max }=N / 4-\frac{1}{2}$. For large
N, it is useful to consider $z\left(\lambda_{j}\right)=Q_{j} / N$

$$
\begin{equation*}
z(\lambda)=(1 / \pi) \tan ^{-1}(2 \lambda)-(1 / \pi N) \sum_{k=1}^{M} \tan ^{-1}\left(\lambda-\lambda_{k}\right) \tag{4}
\end{equation*}
$$

and the derivative of this function, $\mathrm{d} z(\lambda) / \mathrm{d} \lambda=\sigma_{N}(\lambda)$

$$
\begin{equation*}
\sigma_{N}(\lambda)=(1 / \pi) \frac{\frac{1}{2}}{\frac{1}{4}+\lambda^{2}}-\frac{1}{\pi N} \sum_{k=1}^{M} \frac{1}{1+\left(\lambda-\lambda_{k}\right)^{2}} \tag{5}
\end{equation*}
$$

which plays the role of a root density. The energy is given by

$$
\begin{equation*}
E_{N}=-J \sum_{j=1}^{M} \frac{\frac{1}{2}}{\frac{1}{4}+\lambda_{j}^{2}} . \tag{6}
\end{equation*}
$$

Using the technique of de Vega and Woynarovich (1985), we present the finite-size corrections in the form
$\Delta \sigma_{N}(\lambda)=\sigma_{N}(\lambda)-\sigma_{\infty}(\lambda)=-\int_{-\infty}^{\infty} \mathrm{d} \mu P(\lambda-\mu)\left((1 / N) \sum_{k=1}^{M} \delta\left(\mu-\lambda_{k}\right)-\sigma_{N}(\mu)\right)$
$\Delta E_{N}=E_{N}-E_{\infty}=-\pi J N \int_{-\infty}^{\infty} \mathrm{d} \lambda \sigma_{\infty}(\lambda)\left((1 / N) \sum_{k=1}^{M} \delta\left(\lambda-\lambda_{k}\right)-\sigma_{N}(\mu)\right)$.
Here

$$
\begin{equation*}
P(\lambda)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \rho}{2 \pi} \frac{\mathrm{e}^{\mathrm{i} \lambda \rho}}{1+\mathrm{e}^{|\rho|}}=(1 / \pi) \operatorname{Re} \beta(1-\mathrm{i} \lambda) \tag{9}
\end{equation*}
$$

and the infinite-size expressions are

$$
\begin{equation*}
\sigma_{\infty}(\lambda)=[2 \cosh (\pi \lambda)]^{-1} \quad E_{\infty}=-J N \ln 2 \tag{10}
\end{equation*}
$$

We now compute the leading-order contribution to ΔE_{N}. Solving equation (4) with respect to λ defines a function $\lambda_{N}[z]$ for continuous z. Changing the integration variables in equation (8), we obtain

$$
\begin{equation*}
\Delta E_{N}=-\pi J N \int_{-1 / 4}^{1 / 4} \mathrm{~d} z \sigma_{\infty}\left(\lambda_{N}[z]\right)\left((1 / N) \sum_{k=1}^{M} \delta\left(z-z_{k}\right)-1\right) \tag{11}
\end{equation*}
$$

with $z_{k}=-\frac{1}{4}+\left(k-\frac{1}{2}\right) / N$. The problem is that as long as the exact values of $\sigma_{N}(\lambda)$ is unknown, $\lambda_{N}[z]$ is not available, either. Below we will argue that, for the leading energy correction, one can substitute

$$
\begin{equation*}
\lambda_{\infty}[z]=(1 / \pi) \ln \tan \left[\pi\left(z+\frac{1}{4}\right)\right] \tag{12}
\end{equation*}
$$

instead. Then, the correction is evaluated to

$$
\begin{align*}
\Delta E_{N}^{(1)} & =-\pi J N\left\{[2 N \sin (\pi / N)]^{-1}-(1 / 2 \pi)\right\} \\
& =-(J / N)\left(\pi^{2} / 12\right)+\mathrm{O}\left(N^{-3}\right) \tag{13}
\end{align*}
$$

The coefficient $\pi^{2} / 12 \approx 0.8225$ agrees with our 'experimental' value ≈ 0.823 calculated by equation (6) using the numerical solutions of equation (2) up to $N=256$ (table 1). The finite-size corrections to the ground state energy had been first computed for relatively small N by Hulthén (1938); later, the N dependence ($N \leqslant 12$) was plotted by Bonner and Fisher (1964), and for $N \leqslant 16$ calculated by Grieger (1984); but up to now, no analytic expression was obtained.

Table 1. The finite-size corrections $\Delta E_{N}=E_{N}-E_{\infty}$ to the ground state energy, multiplied by $-N / J$ (numerical results).

N	$-(N / J) \Delta E_{N}$	N	$-(N / J) \Delta E_{N}$	N	$-(N / J) \Delta E_{N}$
4	0.909645	10	0.839745	64	0.824437
6	0.863355	16	0.831064	130	0.823687
8	0.847328	32	0.826165	256	0.823318

We now wish to estimate the error caused by using $\lambda_{\infty}[z]$ instead of $\lambda_{N}[z]$ in equation (11):
$\Delta E_{N}^{(2)}=-2 \pi J N \int_{0}^{1 / 4} \mathrm{~d} z\left\{\sigma_{\infty}\left(\lambda_{N}[z]\right)-\sigma_{\infty}\left(\lambda_{\infty}[z]\right)\right\}\left((1 / N) \sum_{k=1}^{M} \delta\left(z-z_{k}\right)-1\right)$.
We split the integration interval into two parts. In the first region, $0 \leqslant z \leqslant \frac{1}{4}-1 / N$, $\Delta \lambda_{N}[z]=\lambda_{N}[z]-\lambda_{\infty}[z]$ is small and

$$
\begin{equation*}
\Delta \lambda_{N}[z] \approx-\left[\sigma_{\infty}\left(\lambda_{\infty}[z]\right)\right]^{-1} \int_{0}^{\lambda_{\infty}[z]} \mathrm{d} \lambda \Delta \sigma_{N}(\lambda) . \tag{15}
\end{equation*}
$$

Then, expanding σ_{∞}, we obtain

$$
\begin{array}{r}
\Delta E_{N}^{(2)} \approx-2 \pi^{2} J N \int_{0}^{1 / 4-1 / N} \mathrm{~d} z \sin (2 \pi z) \int_{0}^{\lambda_{\infty}[z]} \mathrm{d} \lambda \Delta \sigma_{N}(\lambda)\left((1 / N) \sum_{k=1}^{M} \delta\left(z-z_{k}\right)-1\right) \\
-2 \pi J N \int_{1 / 4-1 / N}^{1 / 4} \mathrm{~d} z \mathrm{e}^{-\pi \lambda_{\infty}[z]}\left(\mathrm{e}^{-\pi \Delta \lambda_{N}[z]}-1\right)\left((1 / N) \sum_{k=1}^{M} \delta\left(z-z_{k}\right)-1\right) . \tag{16}
\end{array}
$$

The difference between the sum and the integral in equation (16) yields a $1 / N^{2}$ factor, and another $1 / N$ factor results from $\int d \lambda \Delta \sigma_{N}$ (see below). In the second region, $\frac{1}{4}-1 / N \leqslant z \leqslant \frac{1}{4}, \Delta \lambda_{N}[z]$ remains no longer small, but the fast decrease in $\sigma_{\infty}(\lambda)$ causes an additional damping. Combining these arguments, we have $\Delta E_{N}^{(2)}=\mathrm{O}\left(1 / N^{2}\right)$. Thus, equations (11) and (13) can be effectively used for computing the energy corrections in the $X X X$ нм.

Let us now proceed to the root-density correction. The difference between the sum and the integral in equation (7) can be estimated as

$$
\begin{align*}
\Delta \sigma_{N}(\lambda)=-(& (1 / 2 N)\left[P\left(\lambda-\lambda_{\max }\right)+P\left(\lambda+\lambda_{\max }\right)\right] \\
& +\int_{z_{\max }}^{1 / 4} \mathrm{~d} z\left[P\left(\lambda-\lambda_{N}[z]\right)+P\left(\lambda+\lambda_{N}[z]\right)\right] \\
& -\left.\left(1 / 12 N^{3}\right) \sum_{k=2}^{M} \frac{\partial}{\partial z}\left[\frac{1}{\sigma_{N}\left(\lambda_{N}[z]\right)} \frac{\partial P\left(\lambda-\lambda_{N}[z]\right)}{\partial \lambda_{N}[z]}\right]\right|_{z=z_{k}^{*}} \tag{17}
\end{align*}
$$

where $\lambda_{\max }=\lambda_{N}\left[z_{\max }\right], z_{\max }=\frac{1}{4}-(1 / 2 N)$ and $z_{k-1} \leqslant z_{k}^{*} \leqslant z_{k}$. We see that, after converting the latter sum into an integral, one should be able to estimate $1 / \sigma_{N}\left(\lambda_{\max }\right)$. From our numerical results we can conclude that $1 / \sigma_{N}\left(\lambda_{\max }\right)=\mathrm{O}(N)$ for $N \rightarrow \infty$. Then, it
is not difficult to derive the following relations from equation (17):

$$
\begin{equation*}
\left|\Delta \sigma_{N}(\lambda)\right| \leqslant A / N \quad\left|\int_{0}^{\lambda_{x}[z]} \mathrm{d} \lambda \Delta \sigma_{N}(\lambda)\right| \leqslant B / N \tag{18}
\end{equation*}
$$

where A and B are constants.
Unfortunately, $\Delta \sigma_{N}(\lambda)$ cannot be calculated simply by iterating equation (7). Owing to the slow decrease in the β function (9), the error caused by replacing $\lambda_{N}[z]$ by $\lambda_{\infty}[z]$ cannot be controlled, and the results obtained in this way would be incorrect. This is confirmed by numerical calculations; even for $\Delta \sigma_{N}(0)$, the estimate then has the wrong sign and does not tend to zero as $N \rightarrow \infty$.

Therefore, we apply another iteration scheme for $\sigma_{N}(\lambda)$, based on equations (4) and (5). Independently, a similar method has been used by Grieger (1984) for solving BAE. To obtain $\sigma_{N}^{(1)}$, on the RhS we use $\lambda_{k}=\lambda_{\infty}\left[z_{k}\right]$ from equation (12). Then, each root is corrected through equation (4), and thereafter $\sigma_{N}^{(2)}$ can be found, etc. To illustrate the efficiency of the scheme, in table 2 and figure 1 we compare the first iteration $\Delta \sigma_{N}^{(1)}(\lambda)=\sigma_{N}^{(1)}(\lambda)-\sigma_{\infty}(\lambda)$ with the exact $\Delta \sigma_{N}(\lambda)$ calculated via the direct numerical solution of the baE (2).

Finally, in table 3 and figure 2 we show the N dependence of the density correction by comparing the cases of $N=10\left(\lambda_{\max }=0.598087\right)$ and $N=256\left(\lambda_{\max }=\right.$ $1.635314)$.

Table 2. The exact finite-size root-density correction $\Delta \sigma_{N}=\sigma_{N}-\sigma_{\infty}$ and its first approximation $\Delta \sigma_{N}^{(1)}=\sigma_{N}^{(1)}-\sigma_{\infty}$ at $N=10$.

λ	$\Delta \sigma_{10}(\lambda)$	$\Delta \sigma_{10}^{(1)}(\lambda)$	λ	$\Delta \sigma_{10}(\lambda)$	$\Delta \sigma_{10}^{(1)}(\lambda)$
0	-2.92×10^{-13}	-3.44×10^{-3}	1.6	1.47×10^{-3}	1.61×10^{-3}
0.2	-2.96×10^{-3}	-3.43×10^{-3}	1.8	1.50×10^{-3}	1.61×10^{-3}
0.4	-2.98×10^{-3}	-3.31×10^{-3}	2	1.38×10^{-3}	1.47×10^{-3}
0.6	-2.66×10^{-3}	-2.80×10^{-3}	2.2	1.19×10^{-3}	1.25×10^{-3}
0.8	-1.81×10^{-3}	-1.79×10^{-3}	2.4	9.84×10^{-4}	1.04×10^{-3}
1	-6.43×10^{-4}	-5.06×10^{-4}	2.6	8.00×10^{-4}	8.41×10^{-4}
1.2	4.36×10^{-4}	6.10×10^{-4}	6	3.39×10^{-5}	3.58×10^{-5}
1.4	1.15×10^{-3}	1.31×10^{-3}	16	6.47×10^{-7}	6.88×10^{-7}

Figure 1. The exact $\Delta \sigma_{N}$ (full curve) and its first approximation $\Delta \sigma_{N}^{(1)}$ (broken curve) as functions of λ for $N=10$. The $\lambda_{\text {max }}$ position is marked by dots.

Table 3. The relative correction $\delta \sigma_{N}(\lambda)=\Delta \sigma_{N}(\lambda) / \sigma_{N}(\lambda)$ to the root density for $N=10$ and $N=256$.

λ	$\delta \sigma_{10}(\lambda)$	$\delta \sigma_{256}(\lambda)$	λ	$\delta \sigma_{10}(\lambda)$	$\delta \sigma_{256}(\lambda)$
0	-5.87×10^{-3}	-4.50×10^{-5}	1.8	0.300	-1.85×10^{-2}
0.2	-7.19×10^{-3}	-5.70×10^{-5}	2	0.424	-1.26×10^{-2}
0.4	-1.14×10^{-2}	-1.04×10^{-4}	2.2	0.543	1.76×10^{-2}
0.6	-1.82×10^{-2}	-2.29×10^{-4}	2.4	0.649	8.06×10^{-2}
0.8	-2.31×10^{-2}	-5.47×10^{-4}	2.6	0.738	0.175
1	-1.51×10^{-2}	-1.34×10^{-3}	3	0.864	0.417
1.2	1.86×10^{-2}	-3.23×10^{-3}	5	$1-1.95 \times 10^{-2}$	0.865
1.4	8.54×10^{-2}	-7.17×10^{-3}	6	$1-1.92 \times 10^{-4}$	$1-1.96 \times 10^{-3}$
1.6	0.183	-1.34×10^{-2}	16	$1-2.29 \times 10^{-16}$	$1-3.08 \times 10^{-15}$

Figure 2. The relative density corrections $\delta \sigma_{N}=\Delta \sigma_{N} / \sigma_{N}$ as functions of λ for $N=10$ (dotted curve) and $N=256$ (broken curve). The $\lambda_{\text {max }}$ positions are marked by vertical lines.

One sees that, with the increase in N, the region where the relative correction is small widens, while the correction itself decreases inside this region and remains practically unchanged on its boundary.

Our numerical data agree in domains of overlap with the results of other authors, particularly those of Grieger (1984) up to $N=16$.

We are indebted to A A Vladimirov for useful discussions.

References

Bethe H 1931 Z. Phys. 71 205-26
Bonner J C and Fisher M E 1964 Phys. Rev. 135 640-58
de Vega H J and Woynarovich F 1985 Nucl. Phys. B 251 [FS13] 439-56
Faddeev L D and Takhtajan L A 1981 Zap. Nauchn. Semin. LOMI 109 134-78
Grieger W 1984 Phys. Rev. B 30 344-7
Hulthén L 1938 Ark. Mat. Astron. Fys. 26A 1-106

