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LElTER TO THE EDITOR 

Finite-size corrections for the XXX antiferromagnet 

L V Avdeev and B-D Dorfel 
Joint Institute for Nuclear Research, Head Post Office, PO Box 79, Moscow 101000, USSR 

Received 22 May 1985, in final form 20 August 1985 

Abstract. We present a method of calculating finite-size corrections for the isotropic (XXX) 
Heisenberg chain in the antiferromagnetic case. The leading corrections to the energy and 
the root density of the ground state are compared with the numerical data up to N = 256 
sites in the chain. 

Integrable models such as the one-dimensional isotropic ( X X X )  Heisenberg model 
( H M )  with the Hamiltonian 

are solved by applying the Bethe ansatz technique (Bethe 1931). The explicit solution 
requires the knowledge of the roots Aj of the so-called Bethe ansatz equations ( B A E )  

For the vacuum state in the case of N even, J > 0 (antiferromagnetic H M ) ,  the solution 
includes M = N / 2  real roots. In the infinite-size limit, N + OC, the number of equations 
as well as the number of roots tend to infinity. Then the BAE are reduced to a linear 
integral equation for a density function ( H u l t h h  1938), which can easily be solved 
(for a survey, see Faddeev and Takhtajan 1981). 

Recently, de Vega and Woynarovich (1985) have suggested a method of calculating 
finite-size corrections for models with a non-zero mass gap. This restriction played a 
crucial role in their calculations. Therefore, the method cannot be directly applied to 
the X X X  H M  where the mass gap vanishes. 

However, using a similar starting point idea, we were able to derive an analytic 
expression for the leading correction to the vacuum energy which is in good agreement 
with our numerical results. Furthermore, we present an iteration procedure, based 
directly on the BAE, for evaluating the root density and demonstrating the relation of 
the first approximation to the exact density calculated numerically. 

In our case the BAE (2)  can be transformed to the following system of equations: 

M 

Q,/N= (1/7r) tan-'(2A1)-(l/7rN) tan-'(A,-Ak) (3) 
k = l  

where the Q,, IQ,/ d Q,,, are (half)-integers according to Qmax = N/4-f .  For large 
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N ,  it is useful to consider z(Aj) = Qj/  N 
M 

z(A) = ( l / ~ )  t a Y 1 ( 2 A ) - ( l / r N )  c tan-'(A - A k )  (4) 
k = l  

and the derivative of this function, dz(A)/dA = aN(A) 

which plays the role of a root density. The energy is given by 

Using the technique of de Vega and Woynarovich (1985), we present the finite-size 
corrections in the form 

M 

AEN = EN -E,= -TJN dA a,(A) (1/ N)  c 6(A -Ak) - a N ( p ) ) .  I-: ( k = l  

Here 
d p  elAp I -= 27r 1 + e i p /  - P ( h ) =  ( l / r )  R e p ( l - i A )  (9) 

and the infinite-size expressions are 

a,(A) = [2 cosh(rA)]-'  E, = -JN In 2. (10) 

We now compute the leading-order contribution to A E N .  Solving equation (4) with 
respect to A defines a function A N [ Z ]  for continuous z. Changing the integration 
variables in equation (8), we obtain 

114 

AEN=-rJN 1 -1/4 dzam(AN[z] ) ( ( l /N)  k = l  6 ( z - z k ) - l  ) (11) 

with Zk=- t+ (k - t ) /N .  The problem is that as long as the exact values of aN(A)  is 
unknown, ~ N [ Z ]  is not available, either. Below we will argue that, for the leading 
energy correction, one can substitute 

A,[z]=(l/.rr) l n t a n [ r ( z + f ) ]  (12) 

instead. Then, the correction is evaluated to 

The coefficient r2/  12 = 0.8225 agrees with our 'experimental' value t0 .823 calculated 
by equation (6) using the numerical solutions of equation (2) u p  to N = 256 (table 1). 
The finite-size corrections to the ground state energy had been first computed for 
relatively small N by HulthCn (1938); later, the N dependence ( N  S 12) was plotted 
by Bonner and Fisher (1964), and for N S 16 calculated by Grieger (1984); but up to 
now, no analytic expression was obtained. 
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Table 1 ,  The finite-size corrections A E N  = EN - E, to the ground state energy, multiplied 
by - N / J  (numerical results). 

N - ( N / J )  AEN N - ( N / J ) A E ,  N - ( N I J )  A E w  

4 0.909645 10 0.839745 64 0.824437 
6 0.863355 16 0.831064 130 0.823687 
8 0.847328 32 0.826165 256 0.823318 

We now wish to estimate the error caused by using Am[z]  instead of ~ N [ Z ]  in 
equation ( 1  1): 

J o  

We split the integration interval into 
A A N [ Z ]  = ~ N [ Z ]  -A,[Z] iS SIl’lall and 

Then, expanding um, we obtain 

AE$’= -2p2JN dz sin(2vz) ldi4-’’ 

two parts. In the first region, O s  z si- 1/ N, 

(16) 

The difference between the sum and the integral in equation (16) yields a 1/  N2 factor, 
and another 1/N factor results from JdA AuN (see below). In the second region, 
b -  l / N s  z si, A A N [ z ]  remains no longer small, but the fast decrease in u,(A) causes 
an additional damping. Combining these arguments, we have AE$’ = O( 1/ N2). Thus, 
equations ( 1 1 )  and (13 )  can be effectively used for computing the energy corrections 
in the X X X  H M .  

Let us now proceed to the root-density correction. The difference between the sum 
and the integral in equation (7 )  can be estimated as 

where Amax = ~ N [ Z , , , ] ,  zmax = t -  (1/2N) and zk-1  c z2 s zk.  We see that, after convert- 
ing the latter sum into an integral, one should be able to estimate l / u N ( A m a x ) .  From 
our numerical results we can conclude that I/cT~(A,,,~.J = O( N) for N + M. Then, it 
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is not difficult to derive the following relations from equation (17): 

where A and B are constants. 
Unfortunately, A u N ( A )  cannot be calculated simply by iterating equation (7). 

Owing to the slow decrease in the j? function (9), the error caused by replacing A N [ z ]  
by A,[ z ]  cannot be controlled, and the results obtained in this way would be incorrect. 
This is confirmed by numerical calculations; even for A a N ( O ) ,  the estimate then has 
the wrong sign and does not tend to zero as N-m. 

Therefore, we apply another iteration scheme for aN(A),  based on equations (4) 
and ( 5 ) .  Independently, a similar method has been used by Grieger (1984) for solving 
BAE. To obtain a:), on the RHS we use A k  = A,[zk]  from equation (12). Then, each 
root is corrected through equation (4), and thereafter a$’ can be found, etc. To 
illustrate the efficiency of the scheme, in table 2 and figure 1 we compare the first 
iteration Aa:’( A )  = a%)( A ) - a,(A ) with the exact A u N  ( A )  calculated via the direct 
numerical solution of the BAE (2) .  

Finally, in table 3 and figure 2 we show the N dependence of the density 
correction by comparing the cases of N = 10 (A,,, = 0.598 087) and N = 256 (A,,, = 
1.635 3 14). 

Table 2. The exact finite-size root-density correction Au.*, = uh. - U= and its first approxima- 
t ion Au( I )  ., - - U \  ( 1 ) -  U- at N = IO. 

A U : ~ ) ( A )  A Au io (A 1 A U\\’( A ) A A u i o ( A )  

0 
0.2 
0.4 
0.6 
0.8 
1 
1.2 
1.4 

-2.92 x 1 0 - l ~  

-2.96 x 10-3 
-2.98 x 1 0 - ~  
-2.66 x IO- )  
-1.81 x  IO-^ 
-6.43 x 

4.36 x 
1.15 x 1 0 - ~  

- 3 . 4 4 ~   IO-^ 
-3.43 x 10-3 
-3.31 x 10-3 
-2.80 x 10-3 
- 1 . 7 9 ~  1 0 - ~  
-5.06 x 1 0 - ~  

1.31 x  IO-^ 
6.10X 

1.6 1.47 x 1 0 - ~  
1.8 1.50x io-) 
2 1 . 3 8 ~   IO-^ 

2.4 9.84 x 
2.6 8 . 0 0 ~  1 0 - ~  
6 3.39 x 1 0 - ~  

16 6.47 x io-’ 

2.2 1 . 1 9 ~  lo-’ 

1.61 x 1 0 - ~  
1.61 x 
1.47x10-3 
1.25 x IO-’ 
1 . 0 4 ~  
8.41 x 1 0 - ~  
3.58 x 
6.88 X lo-’ 

0.002 1 

Figure 1. The exact A U , ~  (full curve) and its first approximation Aut;’ (broken curve) as 
functions of A for N = IO. The A,,, position is marked by dots. 
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0.04 

z 
la 
0 

0.02 

0 

-0.02 

Table 3. The relative correction & T ~ ( A ) = A U ~ ( A ) / U , ~ ( A )  to the root density for N =  10 
and N=256.  

I 
I 
I 

I 
I 
I 
I 
I 

- 
i - 
i 
: : 

I . .  
0 . 
0 1 -  2 1  h 7 -  

- %a : %....*f 

I 
\ I  / 

/ ?’ \ ‘  
\ I  

-..% : 
‘c, : 

.. -*......* 
: + J 

0 
0.2 
0.4 
0.6 
0.8 
1 
1.2 
1.4 
1.6 

-5.87 x 1 0 - ~  
-7.19 x 1 0 - ~  
-1.14X lo-’ 
-1.82X lo-’ 
-2.31 x 
-1.51 X IO-’ 

1 . 8 6 ~  lo-’ 
8 . 5 4 ~  lo-’ 
0.183 

-4.50 x 1 0 - ~  

- 1.04 x 1 0 - ~  
-2.29 x 1 0 - ~  
-5.47 x 1 0 - ~  
- 1 . 3 4 ~  1 0 - ~  
-3.23 x io-’ 
- 7 . 1 7 ~  1 0 - ~  

- 5 . 7 0 ~  

- 1 . 3 4 ~  

1.8 
2 
2.2 
2.4 
2.6 
3 
5 
6 

16 

0.300 -1.85X 
0.424 - 1 . 2 6 ~  
0.543 1.76 X 

0.738 0.175 
0.864 0.417 
1 - 1.95 X 0.865 
1 - 1.92 x 1 - 1.96 x 
1-2.29 x 1-3.08 X 

0.649 8.06 x 

Figure 2. The relative density corrections 8uw = AuN/uN as functions of A for N = 10 
(dotted curve) and N = 256 (broken curve). The A,,, positions are marked by vertical lines. 

One sees that, with the increase in N, the region where the relative correction is 
small widens, while the correction itself decreases inside this region and remains 
practically unchanged on its boundary. 

Our numerical data agree in domains of overlap with the results of other authors, 
particularly those of Grieger (1984) up to N = 16. 

We are indebted to A A Vladimirov for useful discussions. 
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